Spatio-spectral fusion of satellite images based on dictionary-pair learning
نویسندگان
چکیده
This paper proposes a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning. By combining the spectral information from sensors with low spatial resolution but high spectral resolution (LSHS) and the spatial information from sensors with high spatial resolution but low spectral resolution (HSLS), this method aims to generate fused data with both high spatial and spectral resolution. Based on the sparse non-negative matrix factorization technique, this method first extracts spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatial unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, fused data are finally derived which are characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data. The experiments are carried out by comparing the proposed method with two representative methods on both simulation data and actual satellite images, including the fusion of Landsat/ETM+ and Aqua/MODIS data and the fusion of EO-1/Hyperion and SPOT5/HRG multispectral images. By visually comparing the fusion results and quantitatively evaluating them in term of several measurement indices, it can be concluded that the proposed method is effective in preserving both the spectral information and spatial details and performs better than the comparison approaches.
منابع مشابه
Object Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images
Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...
متن کاملSpatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion
Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has b...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملAn Integrated Framework for the Spatio-Temporal-Spectral Fusion of Remote Sensing Images
Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio–temporal– spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio–spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 18 شماره
صفحات -
تاریخ انتشار 2014